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SUMMARY

Solute identification by retention data alone does not yield a positive identifi-
cation for two or more solutes with approximately the same retention times. In such
cases, two columns with two different stationary phases are needed for solute verifi-
cation. For this reason, the concentration profiles of gas chromatographic peaks
have been studied using the empirically derived eight-parameter model of Chesler
and Cram. A non-linear least squares fit of the data fo this model has made it possible
to derive parameters which allow homologous class recognition and specific solute

. identification. Two methods for determining the initial estimates are presented. In
one method the initial estimates were calculated from the data in a purely empirical
manner, while the other is based mathematically on the model. The fitted values of
the parameters from the two metheds are compared for the purpose of illustrating the
dependence of the fit on the choice of initial estimates. Some of the parameters are
believed to have physical significance. For example, an almost lincar relationship
between one of the fiited parameters, C,, and the diffusion coefficient, D4z, of the so-
lute in the carrier gas was found. Similar results were found for C; versus D,g, the
capacity ratio k' and C,, and k'/(1 + k')? and GC,.

INTRODUCTION

The gualitative analysis of gas chromatographic peaks can be obtained from
retention data. Such data are reported in terms of the Kovdts indices', the Rohr-
schneider constants?, etc. This approach works quite well® provided that there is
enocugh of a difference between the retention data of the standards. If there can be no
positive identification made for the specified column conditions from which the re-
tention data are obtained, the stationary phase or temperature must be changed and
the analyses re-evaluated®.

Various port and pre-column devices have been utilized for solute identifi-
cation (cf. ref. 3). While these devices are extremely useful, it is of basic interest to
examine the relationship between the eluted peak shape and its nature, since this might
also lead to a better understanding of column processes.

One approar‘h to the identification procedure involves the use of moments and
their derived parameters, skew and excess®—'°. The correlation between skew and ex-
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cess for various homologous families does not yield a positive identification of a solute
according to its family, since there is a pronounced overlap for certain families®.
Since moment analysis is very sensitive to noise, the use of the higher moments (e.g.,
skew and excess) amplifies this noise® and the accuracy of this technique diminishes.

Slope analysis®-? may be employed by the use of second derivative plots as in
the case of double peak recognition. This method is tedious as far as the mathematics
are concerned but much simpler than mement analysis.

Curve fitting of the data to some predetermined model is still another alter-
native. For the application of this method, a mathematical model must b assumed.
Throughout the literature various functions have been used such as the Poisson distri-
bution®!, Bessel function!!, Gaussian'*>'®, bi-Gaussian!?, exponeniially modified
Gaussian®, a linear combination of the Cauchy function with a Gaussian'?, quadratic
at the data closest to the maximum of the peak®*, Edgeworth series'?, Gram-Charlier
series®, a Gaussian with a triangular joining function to an exponentially weighted
tail®-!°, and a Gaussian convoluted with a hyperbolic tangent joining function to an
exponential decay'®. The last function proposed is very similar in struciure to the
empiricalequation developed by Gutknechtand Perone**for their work in polarography.

The models used for the description of chromatographic profiles have generally
been based on phenomena associated with the chromatographic interactions of the
solute!®-!!, Many of these functions assume a Gaussian leading edge from which valu-
able chromatographic data are readily obtainable. The shape of the tail of the peak
presents the major problem that arises in the selection of a model for curve fiiting
analysis.

ternberg!® discusses the various parameters that affect the shape of the peak.
These include the input fun¢tion (sample injection), detector delay, and peak spread-
ing in the connectors and tubing, as v/ell as adsorption—desorption kinetics and dif-
fusion in the carrier gas'!. He proposes an approximation of the actual peak shape by
Gaussian, triungular, and exponential portions. The “mirroring” of the front half of
the peak to the back and cumpensating for the difference with his joining function is
in close resemblance to the model suggested by Chesler and Cram®. In the latter
instance, the hyperbolic tangent function joms smoothly with the Gauossian and decay
portions.

Macnaughton er al.'” monitored the shape of high-precision gas chromato-
graphic peaks during principle component analysis of a homologous series, whereby
changes in the chromatographic svstem were deteciable along with sample compo-
sition. Anderson ef al.'® used computer analysis for resclving non-Gaussian peaks
using a curve fitting procedure. They emphasize that it is known that the shape of the
peak is a function of its position in the chromatogram, and sometimes due to its
molecular structure if there is adsorption. As will be discussed in this work, it is the
molecular structure that plays the more important role of the two, and the curve
fitting procedure employed is feasible for qualitative analysis.

It was the aim of this study to dctermine the feasibility of classifying graphic
peaks using the parameters of the function of Chesler and Cram!® for three homolo-
gous families. It was thought that some of the parameters in the equation are charac-
teristic of the selutes. Also, it is of interest to examine and see if functions such as sug-
gested by Chesler and Cram can have physical significance. That is, if the parameters
of the equation are a refiection of the column processes.
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EXPERIMENTAL

Apparatus )

The apparatus used for this work was similar to that used by Grushka and
Maynard®® and Grushka and Schnipelsky®. The column used was 200 cm in length
and 0.64 cm O.D. The column packing consisted of Carbowax 1540 on Chromosorb
W-AW-DMCS 80-100 mesh. The data were collecied on paper tape, as described by
Grushka and Schaipelsky??, and converted to cards. All programs were run on a CDC
6400 computer.

Procedure

Three solutes from each of three homologous serics were introduced individual-
ly to the chromatograph via a Seiscor Model VIII injection valve (Seiscor, Tulsa,
Okla., U.S.A.). The oven temperature was maintained at 60°, except for one study,
where the temperature was 80°. The carrier velocity was kept at 10 cm/sec.

All of the solutes were obtained from variocus vendors and were of reagent
grade.

THEORY

The funciion used in the curve fitting procedure is the eight-parameter function
suggested by Chesler and Cram®®. This model can be expressed as follows:

_‘(t’_ C.gz
Y(t) = C1 { exp———‘fs-——)—

+ [1 — 0.5(1 — tanh[Cy(¢ — cs)])] .
Csexp [— 0.5 C; (|t — G| + 1 — Co] } )

where
¥Y(¢) = value of the function at time 7

C, = maximum of the peak

C; = slope oi the hyperbolic tangent

€5 = midpoint of the hyperbolic tangent

C, = position of the peak maximum

Cs; = variance of the peak at 0.61 of C,

Cs = ratio of the height of the exponential decay to C; at £t = G
C; = rate of decay of the exponential

Cy = position where the decay function originates.

The first term in the equation is the Gaussian which defines the front part of the peak.
The remaining two terms are the hyperbolic tangent joining and exponential decay
functions. As an approximating fucntion, more flexibility is allowed, due to the in-
creased number of parameters that control the shape of the peak as opposed to other
models, for example, the exponentially modified Gaussian™?'. Also these parameters,
or a combination of such, may contain other chromatographic information.

The leading edge of the pezk is assumed to be Gaussian from which estimates
of C,, C,, and C; can be obtained directly from the digitized data. For the remaining
parameters, C,, C;. C;, C-, and C, it is imperative that these values be estimated sys-
tematically from peak to pezak to avoid any fluctuations in the fitted values. The al-
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gorithm used for evaluating the initial estimates from the digitized data is siraight-
forward and can be done within the computer program. It was found that the esti-
mates-for C,, C;, and Cg are all directly related to £, defined as the skewness factor by
Roberts ef al.2!, This constant 7 is evaluated by the difference between the width of

the peak st 1/4 C, on the failing edge and the w1dth of the peak at /2 C, on the lcading
edge. Estimates for C, can be obtained from (¥)~%, but for cases where v is small
(less than 1.0) the estimate for C, is determined as () 1. C; indicates the broadness or
asymmetry of the peak; thus as z increases, the estimate for C, decreases with increas-
ing asymmetry. Estimated values for C; and C; are evaluated as C -+ 7 and C, + 27,
respectively. In this case, as 7 increases C; and Cj occur further from the peak maxi-
mum than for a peak with a small value of =. The height ratio of the exponential decay
Cs is determined by the value of the data at approximately C; divided by the peak
height. Likewise for C;, the slope of the curve is calculated between C; and the next
data point, divided by the peak height, since the decay function is assumed predom-
inant at this point.

An alternative method was derived for the evaluation of the initial estimates.
In this case the front half of the peak was subtracted from the back half. The remaining
data resembled another peak which will be referred to as the difference peak. From this
difference peak C,, C;, Cg, C;, and (C; are estimated.

The midpoint of the hyperbolic tangent function, i.e., C;, is taken as the posi-
tion of greatest slope of the increasing portion on the difference peak, while C, is
this slope divided by the original peak height. C,. Assuming that C; > GC;, Cs is
estimated as

Cs ~2Y,/C, )

where Y, is the value of the difference peak at the estimated value of C;. The rate of
the exponential decay C; is estimated by selecting two points along the tail of the dif-
ference peak such that the joining function would be approximately unity and the
oaly function with significant influence would be the decay function. Thus, C; is
calculated as

Ya

In
Yd.’. -
R @

where Y, and Y. are taken from the tail of the difference peak with #, and ¢, as their
corresponding time values. The starting position of the exponential can be estimated
by calculating C; at some point on the tail of either the difference peak or the main
peak, far removed from C; such that the hyperbolic tangent is unity. Thus,

c8~z+clxn(cf’cs) @

where 7 is the corresponding time of the data point ¥.
It is interesting to note that the product of the joining function and exponential
decay passes through a maximum which is not necessarily at f = C; as previously re-
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ported‘s Aasummg that the maximum occurs at £ > C, after differentiation of the
remaining terms in egn. 1, the position of the maximum can be evaluated at

1 C =

3=C3+?€1ﬂ[c:+l/(cz +1)] 3
Since C, and C; are always greater than zero, the argument of the natural logarithm
function is positive, thus only real values will exist for the position of the maximum.
If the value of C, was to tend to infinity, i.e., for a very symmetrical peak, the second
term would diminish to zero and the maximum would be very close to Cs, if C; were
to exist at all.

Applying a mathematical model to a physical systenm necessitates the imple-
meantation of constraints in the curve fitting program. One of the most crucial con-
straints is that none of the parameters are aliowed to become negative. If they do,
then the physical significance of the model will be lost. To alleviate this problem
eqn. 1 was modified and supplied to the program in the following manner??

Y() = C? { exp [i(%f_;‘l] + [t — 051 — tanh [C3.(c — C2)D] -

C2. exp [— 0.5C2 (|t — CZ |+t — c;‘)]} ®)

where Cre, Cie, Csey, Cysy Cse, Cge, Cqe, and Cge correspond to the square root of
their respective parameters in the original equation. This revision of the equation
allows the parameters to become negative during the iterative processes, but when
substituied in the equation itself they are squared, thus resulting in positive values.
It should also be noted that the modified form of the equation does not require any
special software for checking the values of the parameters between iterations. Another
constraint is that for the method to be internally consistent within a given set of ex-
perimental data, the same method of initial estimates must be utilized throughout,
as well as the manner in which it is fitted.

By the application of the aforementioned modifications, it is possible to fit
experimental data to the given model with the chances of false convergence being
minimized. The method by which the data are supplied to the curve fitting program
is entirely up to the user. The data can be fitted in two parts. The front part of the
peak up to the peak maximum is fitted to the Gaussian portion of the eqration, while
the remaining part is fitted to the entire model, using the values of C,, C., and C; from
the first fitting and keeping them constant. Another alternative is to follow the above
method and then proceed by fitting the entire set of data to the complete model using
the values from the previous fits as initial estimates. Finally, one can follow the method
used by Chesler and Cram?®, where the entire set of data is fit to the model holding
C,, C,, and C; coastant while the other parameters are being fitted. The choice of the
method to fit the data should be consistent for a particular apalysis.

The program for the non-linear least squares curve fitting used in this study,
NLIN2, was written at E. 1. du Pont de Nemours Company and madified by the com-
puting center at this university*. The algorithm this routine was written from was
developad by Marquardt®. It combines the Taylor series method with the method of
steepest descent to interpolate the estimates of the parameters for a non-linear func-
tion.
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RESULTS AND DISCUSSION

Qualitative analysis

The study of peak shapes via the non-linear least squares curve fitting technique
was first investigated by visually estimating the parameters C,, C;, Cs, C;, and Ce.
This technique was not satisfactory because the parameters for different runs of the
same solute did not converge consistently. With this problem a systematic method of
initial estimates had to be followed for the duration of the study. The simplest method
to implement was the empirical, 7 based estimates. All of the data yiclded parameters
that were consistent, with the exception of hexane, as will be discussed shortly.

To test the validity of the model for symmetric profiles, a Gaussian peak was
simulated by the computer, and was fitted to eqn. 6 by estimating the parameters
zccording to the T method. The values used for generating the Gaussian peak were:
C, = 100, C, = 1.50, and C; = 2.25. Estimates for the eight parameters and their
final fitted values are given in Table I. The least square fit was excellent: the ““good-
ness™ of the fit, @ (sum of the squares of the residuals), was 7.2 x 1078 for the front
of the peak and 5.9 x 1078 for the fitting of the back half to the entire equation.

As illustrated by Table I, the most significant parameter that caused such a
good fit of the data is C. If C; is zero, the product of the joining function and ex-
ponential decay is also zero, resulting in a pure Gaussian peak. It was expected that
C,, since it controls the broadening of the peak, would tend to infinity, while C; and
Cs would approach C, for the Gaussian profile. As seen in Table I this did not occur.
A possible explanation might lie in the nature of the model and in the fact that it has
adjustable parameters. Nevertheless, it will be shown that useful information can
be obtained from the procedure used.

TABLEI

LEAST SQUARES FIT OF A GAUSSIAN PEAK TO THE PROPOSED EQUATION BY
CHESLER AND CRAM .

Parameter Initial estimate Fitted value

C, 160.0 100.0

C,; i.11 0.973

Cs 5.40 9.88

Ce 4.50 4.50

Cs 1.82 2.25

Cs 0.430 393 x 1078
C; 0.362 1.77

Cs 6.30 5.02

If one is to study carefuily the model proposed by Chesler and Cram, the pa-
rameters that control the shape of the tail, C,, C;, C;, C,, and Ce, must be fully under-
stood. Supposing a peak has a characteristically long tail, it should be intuitive that
this implies a small value (<0.5) of C,, a large value of Cs (>0.5), a small value of
C; (&0.1), and that C; and Cg have values that are far removed from the actual peak
maximum. C, is extremely important, since it controls the broadness of the peak.
Defining two new parameters, C;’ and Cy as the distance C; and C; accur from Cg,
respectively, the broadness of any peak may be studied in more detail. It is on the ratio
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of these differences, C5'/Cy', as well as on C, and C,; that the identification process
will be based.

The data given in Table II show the results of fitting chromatographic peaks
to eqn. 6 for three homologous families. The values of the parameters show consistency
within a given family. All of the peaks were fitted in exactly the same manner, ie.,
using the 7 method of initial estimates and fitting first the front half of the peak to a
Gaussian, then the remaining data fo the entire equation using the values of C;, C;,
and C; from the first fit. The precision of the data is quite gocd for most of the param-
eters. Hexane presented a special case. For a sample of over ten hexane peaks, fiuctu-
ations of the fitied parameters were very predominant. This was most noticeable for
C,. An explanation for this is the fact that the ¢ estimates varied between 0.40, 0.45,
and 0.50 sec. Due to the 0.05 recorder digitization rate, and a very limited amount of
data available for the narrow hexane peaks, this variation in = was shown to be highly
significant. Values of C, for hexane could be grouped into three categories: 4.31 (v =
0.50 and 0.45), 2.72 (z = 0.40), and 2.17 (z = 0.40). The value of C; = 4.31 was
eliminated by the use of eqn. S and locating the position of the maximum of the dif-
ference peak. Because of the experimental error involved in digitized data, the re-
maining values of C, were averaged and used for the identification analysis.

TABLE I

VALUES OF THE FITTED PARAMETERS FOR THREE HOMOLOGOUS FAMILIES PLUS
STANDARD DEVIATIONS

Solute Cs Cs Ce Cs Cs C; Cs
n-Hexane 2. 27.35 26.73 0.203 0.649 2.16 27.29
+ 0.30 + 0.06 + 0.01 =+ 00004 40271 +0.11 = 0.15
n-Heptane 1.68 33.32 32.14 0.537 0.425 1.18 32.81
+ .06 X 0.05 4+ 0.05 + 0.001 + 0019 <+ 004 + 0.04
n-Octane 1.11 51.52 49.84 1.314 0.410 0.698 50.73
=+ 0.01 =+ 0.02 + 0.03 4+ 0.003 = 0.001 + 0.012 = 0.02
Benzene 0.434 129.95 125.10 7.725 0.391 0.348 127.49
+ 0.007 + 0.10 + 0.89 4-0.022 <+ 0007 = 0.001 + 0.09
p-Xylene 0.168 400.99 388.88 52.89 0.364 0.137 394.35
=+ 0.0602 + 0.46 + 0.16 + 0.14 + 0.013 = 0.004 + 0.33
Mesitylene 0.0892 729.45 770.40 171.66 0.376 0.0818  780.56
-+ 0.0029 = 1.38 + 045 + 1.34 4+ 0090 <+ 00104 + 049
Ethanol 0.739 134.43 132.65 5.480 0.334 0.209 137.20
+ 0.003 + 0.08 + 0.05 £ 0.043 L0007 = 0.003 + 0.10
n-Propanol 0.391 256.00 252.50 21.75 0.194 0.0779 260.49
+ 0.002 4 0.18 + 0.08 =+ 0.16 + 0.004 <+ 0.0019 + 0.09
n-Butanoi 0.196 515.55 508.24 75.34 0.227 0.03% 524.66
=+ 0.004 + 020 + 0.14 = 0.64 4 0.004 4 0.0005 = 0.25

For the identification procedure it was assumed that C, and C;'/C," would be
most beneficial. Fig. 1 shows the relationship between C;'/Cy" and C,. The three
families studied here are grouped together in different regions on the plot. If one had
two peaks of approximately the same retention time (C.) (consider ethanol and ben-
zene), normally the column conditions must be changed (stationary phase, temper-
ature, etc.) to distinguish between these two solutes. With the use of the G3'/C'
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Fig. 1. C5’/Cy’ versus C, for three homologous families. Column temperature, 60°; carrier velocity,

10 cm/sec. The vertical bar represents the extremely large deviation for hexane in Cy/Cy’. All other
deviations are included. i

versus C, plot, one can readily distinguish between d fierent solutes. Conversely, if
two solutes have either the same C5'/Cy’ or C, value their retention times, most likely,
would be different. Thus using the parameters in Fig. 1 and C, qualitative identifi-
ca’ion can be made. Similar results can be seen in Fig. 2. In this plot of G’/ versus
C; the solutes are grouped into families in a comparable fashion to Fig. 1. This can
be taken to imply that even though the value of C, increases within a given family, the
characteristics of the shape of the peak exhibited by the tail are consistent within that
family.

The second method of initial estimates was used as the next step fo study the
dependence of initial estimates on convergence. It was found that this method breaks
down for symmetrical peaks and for profiles due to overloaded columns. The reason
for this is that the difference peak calculated is very sensitive to noise and is negative
for the most part, therefore making initial estimation virtually impossible. This was
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Fig. 2. C5°/Cs’” versus C, for three homologous families. Column temperature, 60°; carrier velocity,
10 cmy/sec. The vertical bar presents the extremely large deviation in G;’/Cy’ for hexane.

the case for some of the solutes analyzed. Various conditions of column overloading
are presentiy being studied in more detail. As an added note of interest, the = method
of estimates is not as sensitive to column overloading, and this may be the more ver-
satile of the two metheds of estimation.

Preliminary studies at 80° seem to indicaie that the present method of solute
identification is still valid. The dependence of the method on various operating con-
ditions is now being studied.

It should be emphasized that the present study was done with individual solutes.
In reality, the chromatogram can be quite complex and complete resolution of the
various solute might not be complete. In such cases, the identification procedure is nat
as clear cut. However, for process control purposes, this method in conjunction with
calibration curves, can be quite useful. While ancillary equipment such as a mass
spectrometer is extremely beneficial, the peak shape allows solute ideatification with
relative ease.

Relation of parameters to chromatographic data

The parameter C,, as discussed previously, controls the broadness of the back
portion of the peak which may contain valuable chromatographic information.
Similarly, the parameters C;'/Cg" and C;, also used for the qualitative analysis study,
were thought to contain such data. By examination of the processes that occur within
the column and correlating them with various parameters of the equation of Chesler
and Cram, much more information may be readily obtainable by the chromatographer.
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Fig. 3. Relationship betwezn C, and the diffusion coefficients of the solutes in helium. The vertical
bars indicate the standard deviation in C;. The horizontal bars indicate that the errors involved were
so small that they could not be shown on this scale.

The first process investigated was the diffusion of the solute in the mobile
phase. If diffusion was to play an important role in the shape of the profile, it should
be reflected in the various parameters. Fig. 3 shows a plot of C, versus Dz, the dif-
fusion coefficient of the solute in helium at 60°, calcialated from the equation of
Fulles ez al.?*. All of the solutes scem to be reflecting the same behavior according to
their family, namely, an almost linear dependence of C, on the diffusion coefiicient
D5 exists. If indeed this is the case, such graphs could be used to estimate diffusion
coefficients with relative ease. This is an exciting extension of the fitting procedure.
The trend that occurs when plotting C; versus D,p (Fig. 4) is not as linear, but again
a reasonable estimaie of D,g may still be possible to obtain. It is interesting to note
that for the C,"fCy'-Dag coordinate system (Fig. 5) the aromatics retained the con-
figuration that they had exhibited in the C;'f/C;-C, coordinate system. Figs. 3-5
seem to imply that the diffusion in the mobile phase plays a singificant role in the shape
of the profile. A more extensive study into the dependence of C,, C;, C3, and C; on
D,s 1s now being carried out in this laboratory.

The next chromatographic parameter that was examined was the capacity
ratio &'. Since this parameter reflects the amount of the solute in the stationary and
mobile phases, it is characteristic of the solute for a given combination of stationary
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Fig. 4. Relationship between C; and_ D5 of the solutes in belium. The vertical bars indicate the stan-
dard deviation in C;. The horizontal bars denote smzll errors that could not be shown to scale.

and mobile phases. In Fig. 6, a plot of &’ versus C, illustrates the relationship between
these two parameters. As the size of the molecule increases within a given family,
its capacity ratio increases as C; decreases. This was found to be the case for the three
families studied. It was this relationship that prompted the correlation of C; to the
resistance to mass transfer in the stationary phase.

The dependence of the resistance to mass transfer in the stationary phase on
the capacity ratio is via the term &£f/(1 + k') (zef. 11). By plotting C; against this term
(Fig. T), it is shown that, again, nearly a linear relationship exists for a spscific family.
It is of interest to note that while the aromatics and alcohols correlate with a positive
slope, the alkanes follow a negative slope. This can be explained by virtue of the fact
that the capacity ratios for the alkanes range from 0.3-1.5 while the remaining families
have &’ values with a minimum of 5.2. ¥t is well known that the resistance to mass
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Fig. 5. Relationship between C3’/Cs” and D,y of the solutes. The vertical bars indicate the standard
deviation in C3’/Cy’. The errors denoted by the horizontal bars were too smzll to te drawn on this
scale.

transfer in the stationary phase shows a maximum at &' = 1. Thus it is possible that
C; is related to the plate height. Further work is being done to test the validity of
the correlation of C, to the resistance to mass transfer term. If a definite correlation
can be established, then rates of adsorption—desorntion, diffusivity of the solute in
the stationary phase, and the thicknes sof the film of stationary phase on the solid
support may become easily evaluated v_: C, and other parameters of the equation of
Chesler and Cram. Similarly, surface activity coefiicients and other related thermo-
dynamic data®® may be correlated to these parameters.

In summary, the use of the mathematical model proposed by Cheslﬂr and Cram
for non-finear least squares curve fitting can allow the identification ‘of two sofutes
with approximately the same retention times without alteration of the column con-
ditions. Also, the relation of these fitted parameters to the physical pracesses associ-



méﬁ%esmgésezm IDENTIFICATION

3.0

‘-i hexane
2 -° e——
¥ heptane
Ca ]
= octane
1.0 —4
= ethanoi
< benzene —propanal
<-p-x¥lens <-butanal masifyiene
-
Q.0
b ' l ! [
0.0 10.0 200 0.0 400

kl
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ated with the chromatographic analysis may produce a deeper. insight into column
processes. For both qualitative anaiysis and relating the parameters to chromatogra-
phic data, this method is much simpler and easier to use than the previous method of
moment analysis. By expanding this study to various other families and column con-
ditions, it is the goal of the authors to provide sufficient physical data for the support
of the empirical model employed in this work.
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